
Objective: Calculation of work done by different forces acting on a body simultaneously.

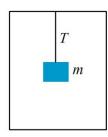
- A ball is released from the top of a tower. Ratio of work done by force of gravity in 1st second, 2nd second and 3rd second of the motion of ball is
 - 1:2:3
- b) 1:4:16
- c) 1:3:5
- d) 1:9:25
- 2. Force (in N) acting on an object varies with the distance travelled by the object as shown in the figure. Work done by the force in moving the object from x = 2 m to x = 4 m is

- 70 J
- b) 270 J
- 35 J c)

- d) 135 J
- 3. A body travels through a distance of 10m on a straight line, under the influence of 5N. If work done by the force is 25J, then angle between applied force and displacement is
- b) 30°
- c) 60°

- d) 90°
- 4. Work done (in joules) in increasing the extension of a spring of force constant 10N cm⁻¹ from 4cm to 6cm is
 - a) 1
- b) 10

- d) 100
- 5. A body of mass m acceleration uniformly from rest to a speed v_0 in time t_0 . Work done on the body in
 - a) $\frac{1}{2}mv_{o}^{2}\left(\frac{t^{2}}{t^{2}}\right)$


- b) $\frac{1}{2}mv_o^2\left(\frac{t_o^2}{t^2}\right)$ c) $\frac{1}{2}mv_o^2\left(\frac{t_o}{t}\right)$ d) $\frac{1}{2}mv_o^2\left(\frac{t}{t_o}\right)$
- 6. Work done in pushing a block of mass 10 kg from the bottom to the top of a frictionless inclined plane 5m long and 3m high is (g = 9.8ms⁻²)
- c) 98J

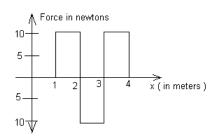
- 7. Work done (in joules) in increasing the extension of a spring of force constant 10N cm⁻¹ from 4cm to 6cm is
 - a) 1
- b) 10
- c) 50

- d) 100
- 8. A 10 kg satellite completes one revolution in 108 minutes around the earth at a height of 100 km from the surface of the earth. Work done on the satellite by the gravitational force of earth is
 - a) 10800 J
- b) 1080 J
- c) 0 J
- d) 108000 J
- 9. A particle moves along the x-axis from x = 0 to x = 5 m under the influence of a force given by $F = 7 - 2x + 3x^2$ N. Work done in the process is
 - a) 70N

- b) 270N
- c) 35N

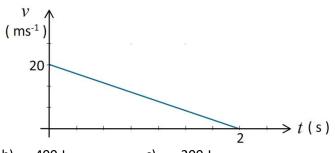
- d) 135N
- 10. A block of mass m is suspended by a light thread from an elevator. The elevator has a uniform upward acceleration a. Work done by tension on the block in t seconds is

- a) $\frac{m}{2}(g+a)at^2$ b) $\frac{m}{2}(g-a)at^2$ c) $\frac{m}{2}(g)at^2$
- d) $\frac{m}{2}(a)at^2$
- 11. A force $F = 2\hat{i} + 3\hat{j} 4\hat{k}$ acts on a body changing its position from (1, 1, 2)m to (2, 1, 3) m. Work done by the force on the body is
 - a) +2 J
- b) -2 J
- c) 1 J


- d) $2\sqrt{2}$ J
- 12. An elastic spring of unstretched length L and force constant K is stretched by small amount l_1 . It is further stretched by another small amount \mathcal{l}_2 . Work done in the second case is
- b) $\frac{1}{2}k[\ell_2^2 \ell_1^2]$ c) $\frac{1}{2}k\ell_2[2\ell_1 + \ell_2]$ d) $\frac{1}{2}k\ell_2[\ell_1 + \ell_2]$

Work, Energy and Power

- 13. Displacement of a body of mass 6 kg is given as a function of time by the relation $s = \frac{t^2}{4}$ m where t is time in seconds. Work done by all the forces acting on the body in 2 seconds is
 - a) zero


b) 9 J

- c) 6 J
- d) 3 J
- 14. The given figure shows the variation of the force applied as a function of displacement for a body moving in a straight line. The work done by the force in 4 seconds is

- a) 10 J
- b) 20 J

- c) 30 J
- d) 40 J
- 15. Velocity time graph of a particle of mass 2 kg moving in a straight line is as shown in the figure. Work done by all the forces acting on the particle is

- a) 400 J
- b) -400 J
- c)
- -200 J
- 200 J d)

Work, Energy and Power

Answers

- 1. c
- 2. a
- 3. c
- 4. a
- 5. a
- 6. b
- 7. a
- 8. c
- 9. d
- 10. a
- 11. b
- 12. c
- 13. d
- . .
- 14. a
- 15. b

For detailed solutions mail your request to sigmaprc@gmail.com (mention the class / chapter / assignment number in the mail)